Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, Australia
Abstract:3D Gaussian Splatting (3DGS) has recently emerged in computer vision as a promising rendering technique. By adapting the principles of Elliptical Weighted Average (EWA) splatting to a modern differentiable pipeline, 3DGS enables real-time, high-quality novel view synthesis. Building upon this, R2-Gaussian extended the 3DGS paradigm to tomographic reconstruction by rectifying integration bias, achieving state-of-the-art performance in computed tomography (CT). To enable differentiability, R2-Gaussian adopts a local affine approximation: each 3D Gaussian is locally mapped to a 2D Gaussian on the detector and composed via alpha blending to form projections. However, the affine approximation can degrade reconstruction quantitative accuracy and complicate the incorporation of nonlinear geometric corrections. To address these limitations, we propose a tomographic reconstruction framework based on 3D Gaussian ray tracing. Our approach provides two key advantages over splatting-based models: (i) it computes the line integral through 3D Gaussian primitives analytically, avoiding the local affine collapse and thus yielding a more physically consistent forward projection model; and (ii) the ray-tracing formulation gives explicit control over ray origins and directions, which facilitates the precise application of nonlinear geometric corrections, e.g., arc-correction used in positron emission tomography (PET). These properties extend the applicability of Gaussian-based reconstruction to a wider range of realistic tomography systems while improving projection accuracy.
Abstract:Large language models (LLMs) are increasingly deployed in domains where errors carry high social, scientific, or safety costs. Yet standard confidence estimators, such as token likelihood, semantic similarity and multi-sample consistency, remain brittle under distribution shift, domain-specialised text, and compute limits. In this work, we present Structural Confidence, a single-pass, model-agnostic framework that enhances output correctness prediction based on multi-scale structural signals derived from a model's final-layer hidden-state trajectory. By combining spectral, local-variation, and global shape descriptors, our method captures internal stability patterns that are missed by probabilities and sentence embeddings. We conduct extensive, cross-domain evaluation across four heterogeneous benchmarks-FEVER (fact verification), SciFact (scientific claims), WikiBio-hallucination (biographical consistency), and TruthfulQA (truthfulness-oriented QA). Our Structural Confidence framework demonstrates strong performance compared with established baselines in terms of AUROC and AUPR. More importantly, unlike sampling-based consistency methods which require multiple stochastic generations and an auxiliary model, our approach uses a single deterministic forward pass, offering a practical basis for efficient, robust post-hoc confidence estimation in socially impactful, resource-constrained LLM applications.
Abstract:Hallucination detection is critical for deploying large language models (LLMs) in real-world applications. Existing hallucination detection methods achieve strong performance when the training and test data come from the same domain, but they suffer from poor cross-domain generalization. In this paper, we study an important yet overlooked problem, termed generalizable hallucination detection (GHD), which aims to train hallucination detectors on data from a single domain while ensuring robust performance across diverse related domains. In studying GHD, we simulate multi-turn dialogues following LLMs initial response and observe an interesting phenomenon: hallucination-initiated multi-turn dialogues universally exhibit larger uncertainty fluctuations than factual ones across different domains. Based on the phenomenon, we propose a new score SpikeScore, which quantifies abrupt fluctuations in multi-turn dialogues. Through both theoretical analysis and empirical validation, we demonstrate that SpikeScore achieves strong cross-domain separability between hallucinated and non-hallucinated responses. Experiments across multiple LLMs and benchmarks demonstrate that the SpikeScore-based detection method outperforms representative baselines in cross-domain generalization and surpasses advanced generalization-oriented methods, verifying the effectiveness of our method in cross-domain hallucination detection.
Abstract:While Large Language Models (LLMs) excel at generalized reasoning, standard retrieval-augmented approaches fail to address the disconnected nature of long-term agentic memory. To bridge this gap, we introduce Synapse (Synergistic Associative Processing Semantic Encoding), a unified memory architecture that transcends static vector similarity. Drawing from cognitive science, Synapse models memory as a dynamic graph where relevance emerges from spreading activation rather than pre-computed links. By integrating lateral inhibition and temporal decay, the system dynamically highlights relevant sub-graphs while filtering interference. We implement a Triple Hybrid Retrieval strategy that fuses geometric embeddings with activation-based graph traversal. Comprehensive evaluations on the LoCoMo benchmark show that Synapse significantly outperforms state-of-the-art methods in complex temporal and multi-hop reasoning tasks, offering a robust solution to the "Contextual Tunneling" problem. Our code and data will be made publicly available upon acceptance.
Abstract:Recent advances in vision-language models have opened up new possibilities for reasoning-driven image geolocalization. However, existing approaches often rely on synthetic reasoning annotations or external image retrieval, which can limit interpretability and generalizability. In this paper, we present Geo-R, a retrieval-free framework that uncovers structured reasoning paths from existing ground-truth coordinates and optimizes geolocation accuracy via reinforcement learning. We propose the Chain of Region, a rule-based hierarchical reasoning paradigm that generates precise, interpretable supervision by mapping GPS coordinates to geographic entities (e.g., country, province, city) without relying on model-generated or synthetic labels. Building on this, we introduce a lightweight reinforcement learning strategy with coordinate-aligned rewards based on Haversine distance, enabling the model to refine predictions through spatially meaningful feedback. Our approach bridges structured geographic reasoning with direct spatial supervision, yielding improved localization accuracy, stronger generalization, and more transparent inference. Experimental results across multiple benchmarks confirm the effectiveness of Geo-R, establishing a new retrieval-free paradigm for scalable and interpretable image geolocalization. To facilitate further research and ensure reproducibility, both the model and code will be made publicly available.




Abstract:Psychological defenses are strategies, often automatic, that people use to manage distress. Rigid or overuse of defenses is negatively linked to mental health and shapes what speakers disclose and how they accept or resist help. However, defenses are complex and difficult to reliably measure, particularly in clinical dialogues. We introduce PsyDefConv, a dialogue corpus with help seeker utterances labeled for defense level, and DMRS Co-Pilot, a four-stage pipeline that provides evidence-based pre-annotations. The corpus contains 200 dialogues and 4709 utterances, including 2336 help seeker turns, with labeling and Cohen's kappa 0.639. In a counterbalanced study, the co-pilot reduced average annotation time by 22.4%. In expert review, it averaged 4.62 for evidence, 4.44 for clinical plausibility, and 4.40 for insight on a seven-point scale. Benchmarks with strong language models in zero-shot and fine-tuning settings demonstrate clear headroom, with the best macro F1-score around 30% and a tendency to overpredict mature defenses. Corpus analyses confirm that mature defenses are most common and reveal emotion-specific deviations. We will release the corpus, annotations, code, and prompts to support research on defensive functioning in language.
Abstract:Electronic health records (EHRs) are designed to synthesize diverse data types, including unstructured clinical notes, structured lab tests, and time-series visit data. Physicians draw on these multimodal and temporal sources of EHR data to form a comprehensive view of a patient's health, which is crucial for informed therapeutic decision-making. Yet, most predictive models fail to fully capture the interactions, redundancies, and temporal patterns across multiple data modalities, often focusing on a single data type or overlooking these complexities. In this paper, we present CURENet, a multimodal model (Combining Unified Representations for Efficient chronic disease prediction) that integrates unstructured clinical notes, lab tests, and patients' time-series data by utilizing large language models (LLMs) for clinical text processing and textual lab tests, as well as transformer encoders for longitudinal sequential visits. CURENet has been capable of capturing the intricate interaction between different forms of clinical data and creating a more reliable predictive model for chronic illnesses. We evaluated CURENet using the public MIMIC-III and private FEMH datasets, where it achieved over 94\% accuracy in predicting the top 10 chronic conditions in a multi-label framework. Our findings highlight the potential of multimodal EHR integration to enhance clinical decision-making and improve patient outcomes.
Abstract:Training large language models (LLMs) is fundamentally constrained by limited device memory and costly inter-device communication. Although pipeline parallelism alleviates memory pressure by partitioning models across devices, it incurs activation communication overhead that scales linearly with sequence length, limiting efficiency in long-context training. Recent weight-passing approaches (e.g., WeiPipe) mitigate this by transmitting model weights instead of activations, but suffer from redundant peer-to-peer (P2P) transfers and underutilized intra-node bandwidth. We propose TawPipe--topology-aware weight pipeline parallelism, which exploits hierarchical bandwidth in distributed clusters for improved communication efficiency. TawPipe: (i) groups devices based on topology to optimize intra-node collective and inter-node P2P communication; (ii) assigns each device a fixed shard of model weights and gradients, avoiding redundant transfers; and (iii) overlaps communication with computation to hide latency. Unlike global collective operations used in fully sharded data parallelism (FSDP), TawPipe confines most communication within node boundaries, significantly reducing cross-node traffic. Extensive experiments on up to 24 GPUs with LLaMA-style models show that TawPipe achieves superior throughput and scalability compared to state-of-the-art baselines.
Abstract:Multi-variate time series (MTS) forecasting is crucial for various applications. Existing methods have shown promising results owing to their strong ability to capture intra- and inter-variate dependencies. However, these methods often overlook lead-lag dependencies at multiple grouping scales, failing to capture hierarchical lead-lag effects in complex systems. To this end, we propose MillGNN, a novel \underline{g}raph \underline{n}eural \underline{n}etwork-based method that learns \underline{m}ult\underline{i}ple grouping scale \underline{l}ead-\underline{l}ag dependencies for MTS forecasting, which can comprehensively capture lead-lag effects considering variate-wise and group-wise dynamics and decays. Specifically, MillGNN introduces two key innovations: (1) a scale-specific lead-lag graph learning module that integrates cross-correlation coefficients and dynamic decaying features derived from real-time inputs and time lags to learn lead-lag dependencies for each scale, which can model evolving lead-lag dependencies with statistical interpretability and data-driven flexibility; (2) a hierarchical lead-lag message passing module that passes lead-lag messages at multiple grouping scales in a structured way to simultaneously propagate intra- and inter-scale lead-lag effects, which can capture multi-scale lead-lag effects with a balance of comprehensiveness and efficiency. Experimental results on 11 datasets demonstrate the superiority of MillGNN for long-term and short-term MTS forecasting, compared with 16 state-of-the-art methods.
Abstract:Phonetic Cloaking Replacement (PCR), defined as the deliberate use of homophonic or near-homophonic variants to hide toxic intent, has become a major obstacle to Chinese content moderation. While this problem is well-recognized, existing evaluations predominantly rely on rule-based, synthetic perturbations that ignore the creativity of real users. We organize PCR into a four-way surface-form taxonomy and compile \ours, a dataset of 500 naturally occurring, phonetically cloaked offensive posts gathered from the RedNote platform. Benchmarking state-of-the-art LLMs on this dataset exposes a serious weakness: the best model reaches only an F1-score of 0.672, and zero-shot chain-of-thought prompting pushes performance even lower. Guided by error analysis, we revisit a Pinyin-based prompting strategy that earlier studies judged ineffective and show that it recovers much of the lost accuracy. This study offers the first comprehensive taxonomy of Chinese PCR, a realistic benchmark that reveals current detectors' limits, and a lightweight mitigation technique that advances research on robust toxicity detection.